Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 346-352, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645874

ABSTRACT

Objective: To investigate the mediating effect of social problems in the effect pathway of emotional dysregulation influencing anxiety/depression emotions in children with attention-deficit/hyperactivity disorder (ADHD) and to explore the potential moderating effect of family functionality. Methods: A total of 235 children diagnosed with ADHD were enrolled in the study. The paticipants' age ranged from 6 to 12. Emotion Regulation Checklist, Achenbach's Child Behavior Checklist (CBCL) Social Problems Subscale, CBCL Anxious/Depressed Subscale, and Family Assessment Device were used to evaluate the emotional regulation, social problems, anxiety/depression emotions, and family functionality of the participants. A moderated mediation model was employed to analyze whether social problems and family functionality mediate and moderate the relationship between emotional regulation and anxiety/depression emotions. Results: Social problems partially mediated the impact of emotional dysregulation on anxiety/depression emotions in ADHD children, with the direct effect being 0.26 (95% confidence interval [CI]: [0.17, 0.36], P<0.001), the indirect effect being 0.13 (95% CI: [0.07, 0.19], P<0.001), and the mediating effect accounting for 33% of the total effect. Family functionality exhibited a positive moderating effect on the relationship between social problems and anxiety/depression emotions. Conclusion: This study contributes to the understanding of complex factors influencing anxiety/depression in children with ADHD, providing reference for the further development of targeted interventions for children with ADHD and the improvement of prognosis.


Subject(s)
Anxiety , Attention Deficit Disorder with Hyperactivity , Depression , Emotional Regulation , Humans , Attention Deficit Disorder with Hyperactivity/psychology , Child , Depression/etiology , Depression/psychology , Anxiety/etiology , Anxiety/psychology , Female , Male , Family/psychology
2.
Cell Prolif ; : e13646, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623945

ABSTRACT

Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.

3.
PeerJ ; 12: e17094, 2024.
Article in English | MEDLINE | ID: mdl-38563003

ABSTRACT

Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.


Subject(s)
Liver Diseases , Sirtuin 1 , Humans , Sirtuin 1/genetics , Liver Diseases/therapy , Inflammation , Signal Transduction
4.
Chemistry ; : e202400414, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454788

ABSTRACT

Li-CO2 batteries facilitate renewable energy storage in a cost-effective, eco-friendly manner. However, an inadequate understanding of their reaction mechanism severely impedes their development. Here we outline recent mechanistic advances in the discharge processes of Li-CO2 batteries, particularly in terms of the theoretical aspect. First, the vital factors affecting the formation of discharge intermediates are highlighted, and a surface lithiation mechanism predominantly applicable to catalysts with weak CO2 adsorption is proposed. Subsequently, the modeling of the chemical potential of Li++e-, which is crucial for the evaluation of the theoretical limiting voltage, is detailed. Finally, challenges and future directions pertaining to the further development of Li-CO2 are discussed. In essence, this concept article seeks to inspire future experimental and theoretical studies in advancing the development of Li-CO2 electrochemical technology.

5.
Heliyon ; 10(5): e26624, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463819

ABSTRACT

Objectives: Ultrasound Needle, which is an improved ultrasonic horn device, has shown great potential for promoting the diffusion of thrombolytic drugs within clots and enhancing clot lysis efficiency. However, the clot lysis efficiency of different thrombolytic drugs with the synergy of Ultrasound Needle remains unknown. In this study, we aimed to compare the lysis efficiency of the non-fibrin-specific drug urokinase and fibrin-specific drug reteplase with the synergy of Ultrasound Needle. Materials and methods: Twenty-five milliliters of human blood was incubated for 1.5 h to form in vitro clots and then received the corresponding treatment protocols: control group (normal saline), US group (10 min of Ultrasound Needle treatment), UK group (30000IU of urokinase), r-PA group (2 mg of reteplase), US + UK group, and US + r-PA group. After treatment, the morphological changes of the clots were analyzed by B-mode ultrasound imaging and hematoxylin and eosin (H&E) staining. Lysis efficiency was evaluated based on the relative end weight (final weight/initial weight). The fibrin density of the different groups after treatment was assessed by immunofluorescence staining. Results: Morphological examination and relative end weight analysis showed that combination therapies induced a more thorough dissolution of clots compared with single therapies, and the US + r-PA group exhibited higher lysis efficiency than the US + UK group. In addition, immunofluorescence staining showed that the US + r-PA group had fewer remaining thrombus fibrins than the US + UK group after treatment. Conclusions: The Ultrasound Needle can significantly improve the clot lysis efficiency of both fibrinolytic drugs, and fibrin-specific reteplase exhibited superior lysis efficiency over non-fibrin-specific urokinase with the synergy of the Ultrasound Needle.

6.
Clin Neurol Neurosurg ; 239: 108229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479036

ABSTRACT

OBJECTIVE: First, the efficacy and safety of aspirin-ticagrelor after cerebral artery stenting in ischemic stroke patients is controversial. Second, there is a gap in the research on guiding two antiplatelet therapy (DAPT) after stenting based on the CYP2C19 genotype. METHODS: This retrospective study included patients who underwent cerebral artery stenting at the First Affiliated Hospital of Chongqing Medical University from January 2019 to February 2023. We divided them into the aspirin-clopidogrel group and aspirin-ticagrelor group and carefully collected baseline information laboratory data and imaging results from the patients. The efficacy outcomes were 30 days recurrent stroke, 90 days recurrent stroke, and 180 days recurrent stroke, and the safety outcome was intracranial hemorrhage. T-tests or Fisher's tests were performed for study outcomes in both groups of patients. OUTCOME: A total of 372 patients were included. For efficacy outcomes, aspirin-ticagrelor was associated with a reduced risk of 180 days recurrent stroke, in patients with CYP2C19 LOF allele (OR = 0.426, CI = 0.184-0.986, P = 0.042) and CYP2C19 intermediate metabolic genotype (OR = 0.237, CI = 0.026-1.034, P = 0.044), compared with aspirin-clopidogrel. There was no significant difference in the rate of intracranial hemorrhage (ICH) between patients with aspirin-clopidogrel and aspirin-ticagrelor, regardless of overall (OR = 1.221, CI = 0.115-7.245, P = 0.683), CYP2C19 LOF allele carriers (OR = 1.226, CI = 0.411-3.658, P = 0.715), or CYP2C19 intermediate metabolizer (OR = 1.221, CI = 0.115-7.245, P = 0.683). No significant differences were found between the two DAPTs on other efficacy and safety outcomes. CONCLUSION: A cohort study found that aspirin-ticagrelor was significantly superior to aspirin-clopidogrel in reducing 180 days recurrent stroke in CYP2C19 LOF allele carriers and CYP2C19 intermediate metabolizers. There was no significant difference between aspirin-ticagrelor and aspirin-clopidogrel in the risk of intracranial hemorrhage in terms of ICH rates.


Subject(s)
Ischemic Stroke , Stroke , Humans , Clopidogrel/therapeutic use , Ticagrelor/adverse effects , Aspirin/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cohort Studies , Retrospective Studies , Intracranial Hemorrhages/chemically induced , Cerebral Arteries , Stroke/genetics , Treatment Outcome
7.
Ultrasound Med Biol ; 50(5): 680-689, 2024 05.
Article in English | MEDLINE | ID: mdl-38311538

ABSTRACT

OBJECTIVE: To explore the effect of ultrasound-stimulated microbubble cavitation (USMC) on enhancing antiangiogenic therapy in clear cell renal cell carcinoma. MATERIALS AND METHODS: We explored the effects of USMC with different mechanical indices (MIs) on tumor perfusion, 36 786-O tumor-bearing nude mice were randomly assigned into four groups: (i) control group, (ii) USMC0.25 group (MI = 0.25), (iii) USMC1.4 group (MI = 1.4) (iv) US1.4 group (MI = 1.4). Tumor perfusion was assessed by contrast-enhanced ultrasound (CEUS) before the USMC treatment and 30 min, 4h and 6h after the USMC treatment, respectively. Then we evaluated vascular normalization(VN) induced by low-MI (0.25) USMC treatment, 12 tumor-bearing nude mice were randomly divided into two groups: (i) control group (ii) USMC0.25 group. USMC treatment was performed, and tumor microvascular imaging and blood perfusion were analyzed by MicroFlow imaging (MFI) and CEUS 30 min after each treatment. In combination therapy, a total of 144 tumor-bearing nude mice were randomly assigned to six groups (n = 24): (i) control group, (ii) USMC1.4 group, (iii) USMC0.25 group, (iv) bevacizumab(BEV) group, (v) USMC1.4 +BEV group, (vi) USMC0.25 +BEV group. BEV was injected on the 6th, 10th, 14th, and 18th d after the tumors were inoculated, while USMC treatment was performed 24 h before and after every BEV administration. We examined the effects of the combination therapy through a series of experiments. RESULTS: Tumor blood perfusion enhanced by USMC with low MI (0.25)could last for more than 6h, inducing tumor VN and promoting drug delivery. Compared with other groups, USMC0.25+BEV combination therapy had the strongest inhibition on tumor growth, led to the longest survival time of the mice. CONCLUSION: The optimized USMC is a promising therapeutic approach that can be combined with antiangiogenic therapy to combat tumor progression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Mice , Animals , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/drug therapy , Mice, Nude , Microbubbles , Disease Models, Animal , Perfusion , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/drug therapy
8.
Polymers (Basel) ; 16(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38256983

ABSTRACT

The traditional curing methods for thermosetting resins are energy-inefficient and environmentally unfriendly. Frontal polymerization (FP) is a self-sustaining process relying on the exothermic heat of polymerization. During FP, the external energy input (such as UV light input or heating) is only required at the initial stage to trigger a localized reaction front. FP is regarded as the rapid and energy-efficient manufacturing of polymers. The precise control of FP is essential for several manufacturing technologies, such as 3D printing, depending on the materials and the coupling of thermal transfer and polymerization. In this review, recent progress on the materials, modeling, and application of FP for thermosetting resins are presented. First, the effects of resin formulations and mixed fillers on FP behavior are discussed. Then, the basic mathematical model and reaction-thermal transfer model of FP are introduced. After that, recent developments in FP-based manufacturing applications are introduced in detail. Finally, this review outlines a roadmap for future research in this field.

9.
RSC Adv ; 14(3): 1602-1611, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179093

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is widely used because of its excellent performance. We report the synthesis of two PEDOT:PSS dispersions. The two dispersions differ by the addition of additional protonic acid in the oxidative polymerization system. Although there are examples of the introduction of acids into the polymerization system, the effects of acid on the structure and properties of these materials, in particular their mechanisms of action, have not been elucidated. We describe the chemical structure and molecular weight of two PEDOT polymers using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis-NIR spectroscopy, and density functional theory calculations. The carrier concentration, carrier mobility, and surface morphology of the composites are characterized by UV-vis-NIR spectroscopy, electron spin resonance, Raman spectra, Hall effect measurements, and atomic force microscopy. The crystallinity of PEDOT:PSS was measured by X-ray diffraction patterns. We show that the addition of a proper amount of protonic acid to the oxidative polymerization system can effectively reduce the formation of the terminal carbonyl group of PEDOT chains, which is conducive to the growth of polymer chains, and further improve the carrier concentration, which leads to an improvement of conductivity. Our results highlight the optimization of the chemical structure of PEDOT in order to increase its molecular weight and ultimately its conductivity.

10.
Int J Biol Macromol ; 260(Pt 2): 129341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218272

ABSTRACT

Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1ß stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1ß stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Epoxy Resins , Hyperglycemia , Mice , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Endothelium, Vascular , Vinculin , Diabetes Mellitus, Experimental/metabolism , Focal Adhesions , Proto-Oncogene Proteins c-fos , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Cell Adhesion Molecules/metabolism , Glucose/metabolism
11.
Nutr Metab Cardiovasc Dis ; 34(1): 75-89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949716

ABSTRACT

BACKGROUND AND AIM: Clinical data on the prevalence of metabolic-associated fatty liver disease (MAFLD) in obese and non-obese individuals within a diverse US population is scarce. Furthermore, the influence of physical activity (PA) and dietary quality (DQ) on MAFLD risk remains unclear. This study aims to assess the prevalence and clinical features of MAFLD and examine the relationship between PA and DQ with the risk of developing MAFLD. METHODS AND RESULTS: A cross-sectional analysis of data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) was conducted. The overall MAFLD prevalence was 41.9%, with 28.6% of participants being obese and 13.4% non-obese. Among those with MAFLD, 67.1% (95% confidence interval (CI): 59.1%-75.1%) were obese, and 32.9% (95% CI: 29.1%-36.7%) were non-obese. Non-obese MAFLD was more frequent in Asians (27.2%), while obese MAFLD was more prevalent in Blacks (66.3%). Metabolic comorbidities were more common in individuals with obese MAFLD, who also exhibited more advanced fibrosis. A high-quality diet (HQD) and increased PA were linked to reduced odds of both obese and non-obese MAFLD (odds ratio (OR) and 95% CI: 0.67 [0.51-0.88] and 0.57 [0.47-0.69]; 0.62 [0.43-0.90] and 0.63 [0.46-0.87], respectively). PA and HQD significantly decreased the risk of obese and non-obese MAFLD (OR and 95% CI: 0.46 [0.33-0.64] and 0.42 [0.31-0.57]). CONCLUSION: A substantial proportion of the US population is affected by both obese and non-obese MAFLD. A strong association exists between a lower risk of both types of MAFLD and adherence to an HQD and engagement in PA.


Subject(s)
Diet , Non-alcoholic Fatty Liver Disease , Humans , Nutrition Surveys , Cross-Sectional Studies , Diet/adverse effects , Obesity/diagnosis , Obesity/epidemiology , Exercise , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology
12.
Biosens Bioelectron ; 246: 115895, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38048720

ABSTRACT

Combined photothermal therapy and nitric oxide (NO)-mediated gas therapy has shown great potential as a cancer treatment. However, the on-demand release of NO at a high concentration presents a challenge owing to the lack of an ideal bio-transducer with a high loading capacity of NO donors and sufficient energy to induce NO release. Here, we present a new 2D BiTiS3 nanosheet that is synthesized, loaded with the NO donor (BNN6), and conjugated with PEG-iRGD to produce a multifunctional bio-transducer (BNN6-BiTiS3-iRGD) for the on-demand production of NO. The BiTiS3 nanosheets not only have a high loading capacity of NO donors (750%), but also exhibit a high photothermal conversion efficiency (59.5%) after irradiation by a 1064-nm laser at 0.5 W/cm2. As a result of the above advantages, the temporal-controllable generation of NO within a large dynamic range (from 0 to 344 µM) is achieved by adjusting power densities, which is among the highest efficiency values reported for NO generators so far. Moreover, the targeted accumulation of BNN6-BiTiS3-iRGD at tumor sites leads to spatial-controllable NO release. In vitro and in vivo assessments demonstrate synergistic NO gas therapy with mild photothermal therapy based on BNN6-BiTiS3-iRGD. Our work provides insights into the design and application of other 2D nanomaterial-based therapeutic platforms.


Subject(s)
Biosensing Techniques , Nanoparticles , Neoplasms , Animals , Nitric Oxide , Bitis , Light , Phototherapy , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/pathology
13.
Tissue Cell ; 86: 102262, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984224

ABSTRACT

Previous studies demonstrated that phosphatases play a pivotal role in modulating inflammation-associated signal transduction, particularly in the context of heat shock, where Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1) appears to have a central role. Recently, Human Antigen R (HuR) has also been identified as a factor that enhances stress-response protein MKP-1 levels. Consequently, we have directed our interest towards elucidating the mechanisms by which heat shock induces MKP-1 mRNA stabilization, dependent on HuR via the p38 MAPK Signaling Cascade. In this study, we subjected Mouse Embryonic Fibroblast (Mef) cells to heat shock treatment, resulting in a potent stabilization MKP-1 mRNA. The RNA-binding protein HuR, known to influence mRNA, was observed to bind to the MKP-1 AU-rich 3 ´untranslated region. Transfection of p38 wild-type Mef cells with a flag-HuR plasmid resulted in a significant increase in MKP-1 mRNA stability. Interestingly, transfection of the siRNA for HuR into Mef cells resulted in diminished MKP-1 mRNA stability following heat shock, inhibition of p38 MAPK activity effectively curtailed heat shock-mediated MKP-1 mRNA stability. Immunofluorescence analyses further revealed that the translocation of HuR was contingent on p38 MAPK Signaling Cascade. Collectively, these findings underscore the regulatory role of heat shock in MKP-1 gene expression at posttranscriptional levels. The mechanisms underlying the observed increased MKP-1 mRNA stability are shown to be partially dependent on HuR through the p38 MAPK Signaling Cascade.


Subject(s)
Fibroblasts , Signal Transduction , Animals , Mice , Humans , Fibroblasts/metabolism , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Heat-Shock Response/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
J Ultrasound Med ; 43(2): 253-263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37853950

ABSTRACT

OBJECTIVES: To investigate the appropriate combination of pulse length (PL) and pulse repetition frequency (PRF) when performing ultrasound stimulated microbubble (USMB) to enhance doxorubicin (DOX) delivery to tumors. METHODS: A total of 48 tumor-bearing mice were divided into four groups, namely groups A-D. The mice in groups B-D were treated with chemotherapy and USMB treatment with different combinations of PL and PRF, and group A was control. Contrast-enhanced ultrasound imaging was conducted to analyze tumor blood perfusion. Fluorescence microscopy and high-performance liquid chromatography were used to qualitatively and quantitatively analyse DOX release. The structural changes of tumors were observed under light microscope and transmission electron microscope. Furthermore, another 24 tumor-bearing mice were treated with sonochemotherapy and some related inflammatory factors were measured to explore the underlying mechanism. RESULTS: With PL of three cycles and PRF of 2 kHz, the tumor perfusion area ratio increased by 26.67%, and the DOX concentration was 4.69 times higher than the control (P < .001). With PL of 34.5 cycles and PRF of 200 Hz, the tumor perfusion area ratio decreased by 12.7% and DOX did not exhibit increased extravasation compared with the control. Microvascular rupture and hemorrhage were observed after long PL and low PRF treatment. While vasodilation and higher levels of some vasodilator inflammatory factors were found after treatment with short PL and high PRF. CONCLUSIONS: USMB treatment using short PL and high PRF could enhance tumor blood perfusion and increase DOX delivery, whereas long PL and low PRF could not serve the same purpose.


Subject(s)
Doxorubicin , Neoplasms , Mice , Animals , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Ultrasonography/methods , Perfusion , Microbubbles
15.
Eur Radiol ; 34(3): 1481-1492, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37796294

ABSTRACT

OBJECTIVES: Sonochemotherapy, which uses microbubble (MB)-assisted ultrasound (US) to deliver chemotherapeutic agents, has the potential to enhance tumour chemotherapy. The combination of US and MB has been demonstrated to prolong the survival of patients with pancreatic cancer. This phase 2 clinical trial aimed to determine the clinical efficacy and safety of sonochemotherapy for inoperable pancreatic ductal adenocarcinoma by using US and MB. METHODS: Eighty-two patients with stage III or IV pancreatic cancer were recruited from July 2018 to March 2021 and followed up until September 2022. US treatment was performed with a modified diagnostic US scanner for 30 min after chemotherapeutic infusion. The primary endpoint was overall survival (OS), and the secondary endpoints were Eastern Cooperative Oncology Group (ECOG) status < 2, progression-free survival (PFS), disease control rate (DCR), and adverse events. RESULTS: Seventy-eight patients were randomly allocated (40 to chemotherapy and 38 to sonochemotherapy). The median OS was longer with sonochemotherapy than with chemotherapy (9.10 vs. 6.10 months; p = 0.037). The median PFS with sonochemotherapy was 5.50 months, compared with 3.50 months (p = 0.080) for chemotherapy. The time of ECOG status < 2 was longer with sonochemotherapy (7.20 months) than with chemotherapy (5.00 months; p = 0.029). The DCR was 73.68% for sonochemotherapy compared with 42.50% for the control (p = 0.005). The incidence of overall adverse events was balanced between the two groups. CONCLUSIONS: The use of sonochemotherapy can extend the survival and well-being time of stage III or IV pancreatic cancer patients without any increase in serious adverse events. TRIAL REGISTRATION: ChineseClinicalTrials.gov ChiCTR2100044721 CLINICAL RELEVANCE STATEMENT: This multicentre, randomised, controlled trial has proven that sonochemotherapy, namely, the combination of diagnostic ultrasound, microbubbles, and chemotherapy, could extend the overall survival of patients with end-stage pancreatic ductal adenocarcinoma from 6.10 to 9.10 months without increasing any serious adverse events. KEY POINTS: • This is the first multicentre, randomised, controlled trial of sonochemotherapy for clinical pancreatic cancer treatment using ultrasound and a commercial ultrasound contrast agent. • Sonochemotherapy extended the median overall survival from 6.10 (chemotherapy alone) to 9.10 months. • The disease control rate increased from 42.50% with chemotherapy to 73.68% with sonochemotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Microbubbles , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Treatment Outcome , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/therapy , Ultrasonography , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
16.
Adv Sci (Weinh) ; 11(3): e2305762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38115673

ABSTRACT

The photothermal performance of black phosphorus (BP) in the near infrared (NIR)-II bio-window (1000-1500 nm) is low, which limits its biomedical applications. Herein, ultrasmall nickel phosphide quantum dots (Ni2 P QDs) are synthesized with BP quantum dots (BPQDs) as the template by topochemical transformation. The size of Ni2 P QDs is ≈3.5 nm, similar to that of BPQDs, whereas the absorption and photothermal conversion efficiency of Ni2 P QDs at 1064 nm (43.5%) are significantly improved compared with those of BPQDs. To facilitate in vivo applications, an Ni2 P QDs-based liposomal nano-platform (Ni2 P-DOX@Lipo-cRGD) is designed by incorporation of Ni2 P QDs and doxorubicin (DOX) into liposomal bilayers and the interior, respectively. The encapsulated DOX is responsively released from liposomes upon 1064-nm laser irradiation owing to the photothermal effect of Ni2 P QDs, and the drug release rate and amount are controlled by the light intensity and exposure time. In vivo, experiments show that Ni2 P-DOX@Lipo-cRGD has excellent tumor target capability and biocompatibility, as well as complete tumor ablation through the combination of photothermal therapy and chemotherapy. The work provides a new paradigm for the NIR-II transformation of nano-materials and may shed light on the construction of multifunctional nano-platforms for cancer treatment.


Subject(s)
Neoplasms , Quantum Dots , Humans , Phototherapy , Phosphorus , Doxorubicin , Liposomes , Neoplasms/drug therapy
17.
Hematology ; 29(1): 2288481, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38108336

ABSTRACT

The interaction between Tim-3 on T cells and its ligand Galectin-9 negatively regulates the cellular immune response. However, the regulation of Tim-3/Galectin-9 on CD4 T cell subsets in multiple myeloma (MM) remains unclear. The aim of this study was to investigate the relationship between the regulation of CD4 T cell subsets by the Tim-3/Galectin-9 pathway and clinical prognostic indicators in MM. Tim-3/Galectin-9 were detected by flow cytometry, PCR and ELISA in 60 MM patients and 40 healthy controls, and its correlation with clinical prognostic parameters was analyzed. The expressions of Tim-3 on CD4 T cells, Galectin-9 mRNA in PBMC and level of Galectin-9 protein in serum were significantly elevated in MM patients, especially those with poor prognostic indicators. In MM patients, Tim-3 was highly expressed on the surfaces of Th1, Th2, and Th17 cells, but lowly expressed on Treg. Moreover, level of cytokine IFN-γ in serum was negatively correlated with Tim-3+Th1 cell and Galectin-9mRNA, Galectin-9 protein level. In addition, cell culture experiments showed that the anti-tumor effect and the ability to secrete IFN-γ were restored by blocking the Tim-3/Galectin-9 pathway. In MM patients, Tim-3/Galectin-9 is elevated and associated with disease progression, by inhibiting the cytotoxic function of Th1, and also promoting Th2 and Th17 to be involved in immune escape of MM. Therefore, Tim-3/Galectin-9 may serve as a new immunotherapeutic target for MM patients.


Subject(s)
CD4-Positive T-Lymphocytes , Galectins , Hepatitis A Virus Cellular Receptor 2 , Multiple Myeloma , Humans , Galectins/genetics , Hepatitis A Virus Cellular Receptor 2/genetics , Leukocytes, Mononuclear , Multiple Myeloma/genetics
18.
Research (Wash D C) ; 6: 0275, 2023.
Article in English | MEDLINE | ID: mdl-38090607

ABSTRACT

Persistent hepatic cellular metabolic stress and liver inflammatory stimuli are key signatures of nonalcoholic steatohepatitis (NASH). DDX3X is a vital molecule involved in cell fate decisions in both pro-survival stress granule (SG) and pro-death NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome assembly in response to stress signals. However, the role of DDX3X in NASH remains unclear. We characterized the cell type-specific roles of DDX3X in NASH. Human liver tissues from NASH patients and normal control subjects were collected to assess DDX3X expression and distribution. Nutritional steatohepatitis models were constructed by feeding macrophage-specific DDX3X knockout (DDX3XΔMφ), hepatocyte-specific DDX3X knockout (DDX3XΔhep), and wild-type control (DDX3Xfl/fl) mice a high-fat and high-cholesterol (HFHC) diet, a methionine- and choline-deficient (MCD) diet, and a high-fat/high-iron/high-fructose/high-cholesterol, low-methionine, and choline-deficient (HFHIHFHC-MCD) diet. The study demonstrated that DDX3X was predominantly expressed in macrophages and hepatocytes in control liver tissues, and its expression was down-regulated in patients or mice with NASH. Compared to DDX3Xfl/fl littermates, DDX3XΔMφ mice showed improved liver histology in nutritional steatohepatitis models. Loss of macrophage DDX3X inhibited NLRP3 inflammasome-mediated pyroptosis, causing anti-inflammatory M2 polarization and alleviating hepatocyte steatohepatitic changes. DDX3XΔhep mice developed marked steatohepatitis in multiple nutritional steatohepatitis models compared to DDX3Xfl/fl littermates. DDX3X-deleted hepatocytes showed impaired SG assembly, leading to increased sensitivity and intolerance to metabolic stimulation and resultant steatohepatitis. In conclusion, DDX3X plays opposite roles in different cell types during the progression of NASH. A better understanding of the cell-specific differences in the crosstalk between SG formation and NLRP3 activation is crucial for developing prospective targeted DDX3X inhibitors for the treatment of NASH.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1764-1770, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38071058

ABSTRACT

OBJECTIVE: To investigate the significance of Tim-3 and Galectin-9 in Th1/Th2 imbalance in patients with multiple myeloma (MM). METHODS: 55 newly diagnosed MM patients and 20 healthy controls were included. Flow cytometry was used to detect the expression of Tim-3 on CD4+T cells, the proportion of Th1, Th2, Tim-3+Th1 and Tim-3+Th2 cells in peripheral blood. ELISA was used to detect the levels of cytokines IFN-γ and IL-4 in serum, and PCR was used to detect the level of Galectin-9 mRNA. Then the correlations between Galectin-9 mRNA expression and Th-cell subsets and related cytokine levels, as well as the relationship between Tim-3+Th1/Tim-3+Th2 ratio and corresponding clinical features were analyzed. RESULTS: Compared with the control group, the expression of Tim-3 on CD4+T cells in peripheral blood of MM patients was significantly increased (P<0.05), the proportions of Tim-3+Th1 cells, Tim-3+Th2 cells and Tim-3+Th1/Tim-3+Th2 ratio in MM patients were also increased (P<0.05), while the proportion of Th1 cells and Th1/Th2 ratio in MM patients were significantly decreased (P<0.05). The level of cytokine IFN-γ and IFN-γ/IL-4 ratio in MM patients were significantly decreased (P<0.05), while the level of cytokine IL-4 was increased (P<0.05). The mRNA levels of Galectin-9 in MM patients were significantly increased (P<0.05). The levels of Galectin-9 mRNA were positively correlated with Tim-3+CD4+T cells (r=0.663), Tim-3+Th2 cells (r=0.492) and IL-4 (r=0.470), while negatively correlated with IFN-γ (r=-0.593). The ratios of Tim-3+Th1/Tim-3+Th2 in MM patients were positively correlated with ISS stage (r=0.511), osteolytic damage (r=0.556) and chromosome abnormality (r=0.632). CONCLUSION: These results suggest that Tim-3 and Galectin-9 are involved in Th1/Th2 imbalance in MM patients, and the high ratio of Tim-3+Th1/Tim-3+Th2 is associated with poor clinical prognosis.


Subject(s)
Galectins , Hepatitis A Virus Cellular Receptor 2 , Multiple Myeloma , Humans , Cytokines/metabolism , Galectins/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Interleukin-4/metabolism , Ligands , Multiple Myeloma/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Th1 Cells/metabolism , Th2 Cells/metabolism
20.
J Anim Sci Biotechnol ; 14(1): 126, 2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37805503

ABSTRACT

BACKGROUND: Studying the composition and developmental mechanisms in mammary gland is crucial for healthy growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neighboring adipocytes. RESULTS: Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differentiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differentiated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands for the next lactation cycle. CONCLUSION: The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithelial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential reference for future studies in the development and remodeling of the mammary gland at different stages.

SELECTION OF CITATIONS
SEARCH DETAIL
...